Hierarchical Hybrid Symbolic Robot Motion Planning and Control †

نویسندگان

  • Ali Karimoddini
  • Hai Lin
چکیده

This paper addresses the motion planning problem using hybrid symbolic techniques. The proposed approach develops a unified hierarchical hybrid control framework using a bismulation-based abstraction technique over the partitioned motion space that can be applied to autonomous aerial robots (3-D symbolic motion planning) or ground vehicles (2-D symbolic motion planning). The bisimulation relation between the abstracted model and the original continuous system guarantees that their behaviors are the same. This allows to design a discrete supervisor for the abstracted model, and then, the designed supervisor can be applied to the original system while the closedloop behavior does not change. To apply the discrete supervisor to the original continuous system, an interface layer is developed, which on the one hand translates discrete commands of the supervisor to a continuous form applicable to the continuous plant and on the other hand, abstracts the continuous signals of the continuous low layer to discrete symbols understandable by the supervisor. The proposed algorithm is verified through implementation of a hybrid symbolic algorithm for the formation control of unmanned aerial vehicles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Hybrid Motion Force Control Algorithm for Robot Manipulators

In this paper we present a robust hybrid motion/force controller for rigid robot manipulators. The main contribution of this paper is that the proposed hybrid control system is able to accomplish motion objectives in free directions and force objectives in constrained directions under parametric uncertainty both in robot dynamics and stiffness constraint constant. Also, the given scheme is prov...

متن کامل

A singularity-free motion control algorithm for robot manipulators - a hybrid system approach

This paper presents the design and implementation of a singularity-free tracking algorithm for robot manipulators using a hybrid system approach. A hybrid robot motion controller is designed to ensure feasible robot motion in the neighborhood of kinematic singularities. The hybrid control system has a two-layered hierarchical structure, a discrete layer and a continuous layer. The robot workspa...

متن کامل

Symbolic Control Design of Nonlinear Networked Control Systems

Networked Control Systems (NCS) are distributed systems where plants, sensors, actuators and controllers communicate over shared networks. Non-ideal behaviors of the communication network include variable sampling/transmission intervals and communication delays, packet losses, communication constraints and quantization errors. NCS have been the object of intensive study in the last few years. H...

متن کامل

Towards Integrating Hierarchical Goal Networks and Motion Planners to Support Planning for Human Robot Collaboration in Assembly Cells

Low-level motion planning techniques must be combined with high-level task planning formalisms to generate realistic plans that can be carried out by humans and robots. A representative example is planning for fenceless assembly cells where robots can collaborate seamlessly with humans to perform assembly tasks. Key constituent components include assembly sequence generation (Morato, Kaipa, and...

متن کامل

Psychologically inspired planning method for smart relocation task

Behavior planning is known to be one of the basic cognitive functions, which is essential for any cognitive architecture of any control system used in robotics. At the same time most of the widespread planning algorithms employed in those systems are developed using only approaches and models of Artificial Intelligence and don’t take into account numerous results of cognitive experiments. As a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014